Yu. M. Krasnopol'skii and V. I. Shvets

UDC 578.824.11:/578.245:/578.1:547.952

KEY WORDS: gangliosides, rabies virus, resistance of the organism.

Reports on the important role of glycolipids (gangliosides) in interaction between the host's cells and viruses, such as influenza virus, have recently been published [3, 7].

Considerable enhancement of the specific action of antirabic immunoglobulin, incorporated into phosphatidylcholine liposomes containing bovine brain gangliosides, was discovered by the writers previously [4]. It was suggested that one cause of the greater efficacy of antirabic immunoglobulin in these experiments is direct interaction between gangliosides and rabies virus. The communication is devoted to the testing of this hypothesis.

EXPERIMENTAL METHOD

Experiments were carried out on noninbred albino mice of both sexes weighing 14-16 g. Gangliosides were isolated from brain, spleen, and erythrocytes [4-6]. Thin-layer chromatography was carried out in silica-gel from Merck (West Germany), in a system of chloroform-methanol-2.5 N aqueous ammonia (60:35:8) and the gel was developed with resorcinol reagent [2, 6]. Standard samples of gangliosides (Sigma, USA) were used for identification.

Rabies virus of the CYS strain, obtained from mouse brain, was used. A suspension of brain tissue containing the virus was treated in various dilutions with equal volumes of a solution of the gangliosides and, after incubation at 37° C for 30 min, it was injected into the brain of albino mice in a dose of 0.03 ml. The mortality of the animals was noted and activity of the virus calculated [1]. Control animals received an injection only of the virus-containing suspension in dilutions of 10^{-4} to 10^{-8} in a volume of 0.03 ml.

EXPERIMENTAL RESULTS

In the experiments of series I the mice were injected with a mixture of virus-containing brain suspension and the total fraction of brain gangliosides.

It will be clear from Table 1 that incubation of the virus with the total fraction of brain gangliosides significantly increased the survival rate of the animals. Injection of a brain suspension containing the virus in a dilution of 10^{-4} (incubation with the gangliosides was carried out in the same concentration), without treatment with gangliosides, led to a 100% mortality.

Correlation was found between the concentration of virus in the brain suspension and the quantity of added gangliosides. For instance, with low values of LD_{50} (from 50 to 100) the mice did not die when a concentration of 20-30 $\mu\mathrm{g}$ per mouse was used, whereas to inhibit virus with activity up to 7000 LD_{50} , the concentration of gangliosides had to be increased to 75 $\mu\mathrm{g}$ per mouse. The animals were not killed for 1-2 months after injection with a mixture of virus and gangliosides. Meanwhile mice receiving virus alone died on the 6th-8th day. The reason for this high affinity of rabies virus for brain tissue is not known. In the first stage we used gangliosides isolated from bovine spleen and erythrocytes. As Table 2 shows, splenic and erythrocytic gangliosides taken in the same proportions as brain gangliosides, gave no significant protective effect. The mortality varied from 80 to 100% depending on the value of LD_{50} .

High antiviral activity of bovine brain gangliosides was thus demonstrated. It was shown at the same time that ganglioside preparations isolated from other sources also

Bacterial Preparations Factory, Khar'kov. M. V. Lomonosov Institute of Fine Chemical Technology, Moscow. (Presented by Academician of the Academy of Medical Sciences of the USSR A. P. Avtsyn.) Translated from Byulleten' Éksperimental'noi Biologii i Meditsiny, Vol. 104, No. 12, pp. 698-699, December, 1987. Original article submitted February 3, 1987.

TABLE 1. Survival Rate of Mice Infected with a Mixture of Brain Suspension Containing Rabies Virus and Total Gangliosides

ing Rabies Virus and Total Gangliosides						
Number of ani- mals	fani- LD ₅₀		Survival rate of mice	survival rate of mice re- ceiving injec- tion of virus only survival rate of mice re- ceiving injec- tion of survival survival rate of mice re- ceiving injec-		
60 50 50 36 50 72	400 6900 1500 55 98 560	60 75 75 20 20 45	100 90 100 100 100 90	0 0 0 15 20	100 100 95 100 100	

TABLE 2. Protective Effect of Splenic and Erythrocytic Gangliosides against Infection of Mice with Rabies Virus

			. 9	,,,	Control		
Number of animals	LD _{5 0}	Source from which gangli- osides obtained	Quantity of ganglirosides injected into one mouse, µg	Survival rate of mice	survival rate of mice receiving injection of	survival rate of mice receiving injection of gangliosides only	
Ž.			Quan osic one	no %			
50 40 45 50 40	200 167 59 125 200	Spleen The same " " Erythrocytes The same	75 75 80 80 75	20 0 10 25 16	0 0 10 20 0	100 90 100 100 95	

TABLE 3. Survival Rate of Mice Infected with a Mixture of Brain Suspension Containing Rabies Virus and Various Ganglioside Fractions

Quantity of gangliosides injected into one mouse,	Survival rate of mice infected with mixture of virus and various ganglioside fractions, %					LD _{5 0}	of mice en deter- activity side n	rate of thout it of virus gliosides),
	GM ₁	GD _{Iã}	GT ₁	GD _{1B}	GM ₁		Number oused when mining a of each ganglios.	Survival r mice (with treatment with gangl
75 100 50 150	20 15 20 15	50 55 47 53	95 90 85 95	25 25 15 15	10 5 5 10	160 147 210 177	40 45 25 50	5 0 5 10

possess considerable antiviral activity.

In the experiments of series II the effect of individual gangliosides isolated from the total fraction of the brain preparation, on resistance of mice to rabies virus was studied.

All gangliosides were taken in a dose of 75 μ g per mouse. As will be clear from Table 3, GT_1 and GD_{1a} had maximal activity, and their administration delayed the development of the viral infection. It can be postulated that rabies virus has high affinity for nerve tissue gangliosides and, in particular, for gangliosides GT_1 and GD_{1a} .

It was interesting to study whether rabies virus infection in vivo can be delayed by means of gangliosides. For this purpose a series of experiments was carried out in which animals were infected with rabies virus in different concentrations, after which a solution of gangliosides was injected into the brain 2 and 6 h and 1, 2, and 3 days after injection of the virus. Injection of gangliosides was effective only during the first day, when activity of the virus was 50-150 LD $_{50}$. An increase in the dose of virus or its later injection did not lower the mortality. The survival rate was between 20 and 60% of the control (death of 100% of the animals). Thus injection of gangliosides into infected animals in the early stages may probably prevent the development of the infection.

There are two possible explanations of the results obtained in these experiments in vivo and in vitro. First, it can be postulated that binding of the virus with the ganglioside prevents its interaction with ganglioside-like receptor sites on the neuron membrane and facilitates subsequent destruction of the virus-ganglioside complex by the immune system. However, a second possibility must also be investigated, namely that the virus-ganglioside is highly immunogenic and induces rapid mobilization of antiviral immune mechanisms.

LITERATURE CITED

1. T. V. Peradze and P. Halonen, Immunologic Diagnosis of Virus Infections [in Russian], Moscow (1985).

- 2. M. Kates, Techniques in Lipodology [Russian translation], Moscow (1975).
- 3. G. V. Kornilaeva, V. A. Slepushkin, and A. G. Budrinskaya, Vopr. Virusol., No. 1, 35 (1986).
- 4. Yu. M. Krasnopol'skii and V. I. Shvets, Cellular Bases of Antitumor Immunity [in Russian], Moscow (1985), p. 44.
- 5. M. I. Prokhorova (ed.), Methods in Biochemical Research [in Russian], Leningrad (1982), p. 101.
- 6. L. D. Bergel'son, É. V. Dyatlovitskaya, Yu. G. Molotkovskii, et al., Preparative Lipid Biochemistry [in Russian], Moscow (1981).
- 7. L. D. Bergel'son (L. D. Bergelson), A. G. Bukrinskaya, N. V. Prokazova, et al., Eur. J. Biochem., 128, Nos. 2-3, 467 (1982).

SPECIFIC BINDING OF (+)-3H-SKF 10047 BY MOUSE SPLENOCYTES

K. N. Yarygin, G. T. Sukhikh,
V. A. Vinogradov, and G. N. Kryzhanovskii†
UDC 615.31:/547.95:547.943/.015.23.
015.4:612.411.014.1/.076.9

KEY WORDS: mouse splenocytes, N-allylnormetazocine.

The compound SKF 10047 (N-allylmetazocine), when administrated to laboratory animals, induces several characteristic responses, namely: a psychotic state, ataxia, inhibition of respiration, dilatation of the pupils, and tachycardia. On the basis of experiments on spinal dogs, Martin and co-workers [5] classed this compound as an agonist of one type (σ) of opioid receptors. In the CNS, stereoisomers of N-allylnormetazocine bind with different receptors: the (-)-isomer interacts mainly with μ -receptors and depresses the effects of morphine, whereas the (+)-isomer binds with type σ receptors and has a psychotomimetic action [3, 10-12]. Specific binding of SKF 10047 has been found in several peripheral organs [1]: in the liver, kidneys, spleen, heart, and gonads. A detailed study of binding sites of SKF 10047 in the rat liver has demonstrated their similarity with the σ -receptors of the brain.

In this investigation specific binding of the tritium-labeled (+)-isomer of SKF 10047 with mouse splenocytes was demonstrated. A study of the binding sites of (+)-SKF 10047 with splenocytes showed that they have a definite similarity to the σ -receptors of the mammalian brain and to binding sites on membranes isolated from rat liver.

EXPERIMENTAL METHOD

Male CBA, C57BL/6, BALB/c and, predominantly, DBA/2 mice were used in the experiments. Animals of the first two lines are known to be resistant to stress, whereas mice of the last two lines are highly susceptible to stress-induced lesions.

Mouse splenocytes were obtained by the method described previously [2] and were resuspended in buffer: Tris-HCl 20 mM, sucrose 0.25 M (pH 7.4), at 25°C (buffer 1).

Binding of (+)-SKF 10047 with splenocytes was studied as follows. Samples of 500 μl in volume contained 10^7 cells and also different concentrations of labeled ligand and of substances hypothetically competing with it for specific binding sites on the splenocytes. All components of the mixture were dissolved or suspended in buffer 1. Incubation was carried out in plastic test tubes at 37 or 0°C. After the end of incubation 1 ml of buffer 1, cooled to 4°C, was added to the sample, the mixture was filtered in vacuo through GF/C filters (Whatman, England), and the filters were washed with 10 ml of cold buffer, dried in air, transferred into scintillation mixture (toluene 2 liters, Triton X-100 1 liter, PPO 22.5 g, POPOP

†Academician of the Academy of Medical Sciences of the USSR.

All-Union Cardiologic Scientific Center, Academy of Medical Sciences of the USSR. Institute of General Pathology and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Byulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 104, No. 12, pp. 700-703, December, 1987. Original article submitted February 16, 1987.